Magnetic Torque

· Equations:

- · Magnetic fields can cause a shape of wine to rotate.
- · Magnetic dipole moment

 IN -> ventor pointing in the
 direction of the magnetic
 field that the loop makes
 along its exis
 (usually M = IA)

 T = M × B

Potential Energy of Magnetic Dipole:

Un=- II · B

Um=-MB cos A

Electric Motors and Generators

· Electric Motor

Electrical energy > mechanical
energy

· Generator Mechanical energy -> electrical energy A rectangular coil of dimensions 5.4 cm x 8.5 cm consists of 25 turns of wire and carries a current of 15.0 mA. A 0.35-T magnetic field is applied parallel to the plane of the coil.

- a) Calculate the magnitude of the magnetic dipole moment of the coil.
- b) What is the magnitude of the torque acting on the loop?

a)
$$M = nIA$$

= $(25)(0.015A)(0.054m)(0.064m)$
= $1.72E-3A.m^2$

b)
$$T = M \hat{S} \sin \theta$$

= $(1.72 = -3 \text{ A} \cdot n^2)(6.35 \text{ T})$
= $6.62 = -4 \text{ M} \cdot m$

A 50-turn circular coil of radius 5.00 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0.50 T. If the coil carries a current of 25 mA, find the magnitude of the maximum possible torque exerted on the coil.

$$T = MB SIMB^{-1}$$

$$= NIAB$$

$$= (50)(0.025A)[\pi (0.05m)^{2}](0.5T)$$

$$= 4.51E-3 N.M$$

A current of 17 mA is maintained in a single circular loop of 2.0 m in circumference. A magnetic field of 0.80 T is directed parallel to the plane of the loop.

- a) Calculate the magnetic moment of the loop.
- b) What is the magnitude of the torque exerted by the magnetic field on the loop? $r = \frac{C}{2\pi} = \frac{2\pi}{2\pi}$

a)
$$M = n T A$$
 = $\frac{1}{4}m$
= $(1)(0.017A)[\pi(\frac{1}{4}m)^2]$
= $5.41E-3A.m^2$

b)
$$T = MBSNAB$$

= $(5.41 = -3A.^{2})(0.80T)$
= $4.33 = -3N.$

$$\overline{r} = \alpha \hat{1} + b \hat{1} + c \hat{k}$$

$$\overline{r} = \langle \alpha, b, c \rangle$$

Matter and Interactions P. 863 P72